star_border star_border star_border star_border star_border
Crop production: learn about agriculture and food production for the future How much food will be available for humankind in the future? Feeding nine billion people in 2050 without exhausting the planetary reserves is perhaps the greatest challenge humanity has ever faced. In this course of the XSeries in environmental studies, you will examine the principles of crop production. You will learn about the ‘availability pillar’ of global food security that lies at the heart of food production, applicable to both crops and animal production. This course will discuss why yields in some parts of the world are lagging behind and identify the agro-ecological drivers that shape the broad diversity of production systems. Also, key issues relating to the closing of yield gaps and the difference in visions of sustainability will be explored. Systems-based approach at Wageningen University The University of Wageningen offers an excellent combination of conducting research worldwide and educating in the area of ‘healthy food and living environment’. Through its unique systems-based approach to food systems, the institute adds the phase of primary production to the broad context of global food security. This is why you should sign up If you want to enrich your views and action perspectives related to global food security and food systems, you can sign up as a: international student professional with a varied educational background After successful completion of both practice and graded questions related to this course, you will: Understand the basic concept of plant production Be able to value central issues related to global food production and consumption Understand the influences of water scarcity and water availability on crop production, as well as measures suppressing pests, diseases, and weeds Be able to identify processes that cause significant environmental problems and evaluate measures to solve and prevent those problems be able to judge innovations in food crop production on their merits for the rural population in the different geographical regions A verified edX certificate provides proof for an employer, school, or other institution that you have successfully completed this online course.
    star_border star_border star_border star_border star_border
    Science plays a crucial role in your decisions as you go about your daily life. The representatives you elect and the legislation you vote on influences science legislation, limits and funding. This class will teach you fundamentals of modern biology to help you make more informed voting decisions. As you learn the fundamentals of Biology, we'll explore the scientific issues sparking political debate: Evolution vs. creationism Reactions to pandemic disease The risks and benefits of vaccination How extinctions impact the planet Space exploration and the search for extraterrestrial life Sexual behavior We look forward to engaging course discussions about how each vote in a democracy affects the way biology functions in your everyday life.
      star_border star_border star_border star_border star_border
      Do you have an interest in biology and quantitative tools? Do you know computational methods but do not realize how they apply to biological problems? Do you know biology but do not understand how scientists really analyze complicated data? 7.QBWx: Quantitative Biology Workshop is designed to give learners exposure to the application of quantitative tools to analyze biological data at an introductory level. The Biology Department of MIT has run this workshop-style course as part of a one-week outreach program for students from other universities. With 7.QBWx, we can give more learners from around the world the chance to discover quantitative biology. We hope that this series of workshops encourages learners to explore new interests and take more biology and computational courses. We expect that learners from 7.00x Introduction to Biology - The Secret of Life or an equivalent course can complete this workshop-based course without a background in programming. The course content will introduce programming languages but will not teach any one language in a comprehensive manner. The content of each week varies. We want learners to have an introduction to multiple languages and tools to find a topic that they would want to explore more. We recommend that learners try to complete each week to find what interests them the most. This workshop includes activities on the following biological topics: population biology, biochemical equilibrium and kinetics, molecular modeling of enzymes, visual neuroscience, global and single-cell gene expression, development, and genomics. The tools and programming languages include MATLAB, PyMOL, Python, and R. This course does not require learners to download MATLAB. All MATLAB activities run and are graded within the edX platform. We do recommend that participants download a few other free tools for the activities so that they learn how to use the same tools and programs that scientists use. Workshop Content Creators and Residential Leaders Gregory Hale, Michael Goard, Ben Stinson, Kunle Demuren, Sara Gosline, Glenna Foight, Leyla Isik, Samir El-Boustani, Gerald Pho, and Rajeev Rikhye Residential Outreach Workshop Organizer and Creator Mandana Sassanfar
        star_border star_border star_border star_border star_border
        In this anatomy course, part of the Anatomy XSeries, you will learn how the components of the integumentary system help protect our body (epidermis, dermis, hair, nails, and glands), and how the musculoskeletal system (bones, joints, and skeletal muscles) protects and allows the body to move. You will engage with fascinating videos, lectures, and anatomical visual materials (illustrations and cadaveric images) to learn about these properties and functions.
          star_border star_border star_border star_border star_border
          Fundamentals of Neuroscience is a three-courseseries that explores the structure and function of the nervous system—from the inner workings of a single nerve cell to the staggering complexity of the brain and the social interactions they enable. In this first course, you'll learn how individual neurons use electricity to transmit information. You'll build a neuron, piece by piece, using interactive simulations, then travel around Harvard's campus, where you'll see the inner workings of a lab and learn how to conduct DIY neuroscience experiments on your own. Join us as we study the electrical properties in individual neurons, building a foundation for understanding the function of the entire nervous system.
            star_border star_border star_border star_border star_border
            The human brain is a fantastically complex system, capable of transforming a torrent of incoming information into thought and action. In this course, we will look at how the various subsystems of the brain work together to enable us to survive and thrive in a changing world. Each lesson will challenge you with interactive segments, animations, and documentaries that explore the richness and complexity of the brain. Our forums will provide you with a place to meet other students around the world, and you can learn from each other through a series of discussion questions. Do you want to learn about how brains perceive the world? Join us as we explore sensation, perception and the physiology of functional regions of the brain.
              star_border star_border star_border star_border star_border
              There is an overload of information about nutrition and health, but what is the truth and what can you do to improve the health of your patients? Learn more about nutrition and how our diet profoundly impacts our current and future health. This course addresses the relationship between nutrition and human health, with a focus on health problems related to overnutrition. In this course, Professor Sander Kersten from Wageningen University & Research will explain about the composition of the three macronutrients: carbohydrates, fat and protein. You will learn about their role in the body (how they are absorbed, stored and metabolized for energy) and their impact on our health. Moreover, this course will cover energy homeostasis and the regulation of body weight. You will learn about overweight and obesity and strategies to improve and combat these problems of overnutrition. Finally, the course will make you familiar with nutritional research and research methodologies. This course is especially useful for health care professionals and people working in the food industry with a non-nutrition background. You will develop a critical mindset by learning to better weigh and interpret information about food, nutrition and health. This course, is part of the Food, Nutrition and Health Professional Certificate Program of Wageningen University & Research. Did you already complete Nutrition and Health: Micronutrients and Malnutrition ? That is the other course in the Food, Nutrition and Health Professional Certificate Program. To explore other learning opportunities about nutrition, have a look at the courses: Food Risks Human Microbiome Nutrition and Cancer Nutrition, Heart Disease and Diabetes
                star_border star_border star_border star_border star_border
                Chemistry and biology are traditionally taught as separate subjects at the high school level, where students memorize fundamental scientific principles that are universally accepted. However, at the university level and in industry, we learn that science is not as simple as we once thought. We are constantly confronted by questions about the unknown and required to use creative, integrated approaches to solve these problems. By bringing together knowledge from multidisciplinary fields, we are empowered with the ability to generate new ideas. The goal of this course is to develop skills for generating new ideas at the interface between chemistry and biology by analyzing pioneering studies. When should I register? Registration will be open throughout the course.
                  star_border star_border star_border star_border star_border
                  Life on our planet is diverse. While we can easily recognize this in our everyday surroundings, an even more diverse world of life can be seen when we look under a microscope. This is the world of microorganisms. Microorganisms are everywhere, and although some are notorious for their roles in human disease, many play important roles in sustaining our global environment. Among the wide variety of microorganisms, here we will explore those that thrive in the most extreme environments, the extremophiles. In this course, we will discover how diverse life is on our planet and consider the basic principles that govern evolution. We will also learn how we can classify organisms. Following this, we will have a look at several examples of extreme environments, and introduce the microorganisms that thrive under these harsh conditions. We will lay emphasis on the thermophiles, extremophiles that grow at high temperatures and will study how proteins from thermophiles can maintain their structure and function at high temperatures.
                    star_border star_border star_border star_border star_border
                    Sexual reproduction can be defined as the sort of reproduction by which each organism arises from the fusion of two cells. This generally implies, with some exceptions, that each organism has two parents. This description might sound trivial it is however not at all. Before the appearance of sex, organisms reproduced solely by division. One cell divided into two cells, no partners, no fusion, just simple cell division. This simple cell division is still here. In fact, the trillions of cells that make up your body are all the descendants of a single cell that underwent several dozens of cell divisions. Surprisingly, most multicellular, as well as, many unicellular organisms reproduce by sex. We might take it thus for granted but this course will show you that it is a rather peculiar and enigmatic process. This course will provide you with the necessary tools to understand how sex works and to marvel at its mysteries. We will start by meeting the actors of this greatest drama in their native habitats, from ancient bacteria that live in thermal geysers in Yellowstone national park to the great mammals that roam the African savanna. We will also briefly discuss the history of life on earth and its contemporary state. The second unit defines the rules of the game explaining the mechanisms of heredity and evolution. The third unit focuses on meiosis, the fundamental and conserved molecular event that forms the basis of sex. And that might have led to the appearance of sex in the first place. We will also explain the fertility cycle and male and female germ cell development. The fourth unit describes the striking variability of sex determination throughout the animal kingdom. We will discuss the requirement for two genders and their considerable cost. Finally, we will dive in the gulf of Aqaba to meet organisms that are both male and female either at the same, or at different times. Sex requires cooperation between two individuals – a male and a female – that are in a basic conflict of interest. Furthermore, males and females compete among themselves. This complex network of cooperation and conflict forms the fascinating plot we will tell in the fifth unit that will discuss the patterns of reproduction and social behavior of different animals – corals, insects, spiders, fish, birds, and mammals. We will be intrigued to discover that the same basic conflict is resolved by a huge range of approaches, from altruistic behavior all the way to open warfare and infanticide. The sixth unit takes us to fertilization and beyond. Starting at an IVF clinic we follow embryonic development throughout the animal kingdom from insects to tadpoles and humans. The seventh unit is dedicated to flowering plants that made our world colorful, sweet-smelling and tasty and that produce almost all animal food.